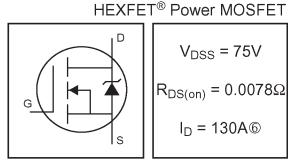
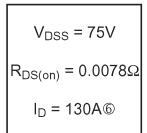
International IOR Rectifier

AUTOMOTIVE MOSFET

IRF1407PbF

Typical Applications


- Integrated Starter Alternator
- 42 Volts Automotive Electrical Systems
- Lead-Free


Benefits

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Timax

Description

Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Absolute Maximum Ratings

		1	
	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	130©	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	92©	A
I _{DM}	Pulsed Drain Current ⊕	520	
P _D @T _C = 25°C	Power Dissipation	330	W
	Linear Derating Factor	2.2	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy®	390	mJ
I _{AR}	Avalanche Current⊕	See Fig.12a, 12b, 15, 16	A
E _{AR}	Repetitive Avalanche Energy⑦		mJ
dv/dt	Peak Diode Recovery dv/dt ③	4.6	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{eJC}	Junction-to-Case		0.45	
R _{ecs}	Case-to-Sink, Flat, Greased Surface	0.50	_	°C/W
R _{0.JA}	Junction-to-Ambient		62	1

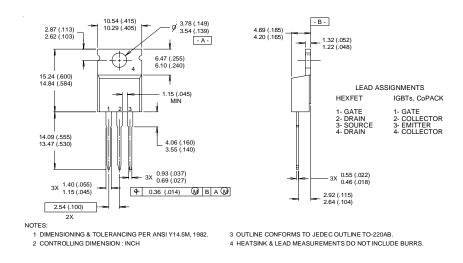
IRF1407PbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

					<u> </u>	
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	75			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.09	_	V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		_	0.0078	Ω	V _{GS} = 10V, I _D = 78A ⊕
V _{GS(th)}	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = 10V, I_{D} = 250\mu A$
g _{fs}	Forward Transconductance	74	_	_	S	$V_{DS} = 25V, I_{D} = 78A$
,	Drain-to-Source Leakage Current		_	20	- μA -	$V_{DS} = 75V, V_{GS} = 0V$
I _{DSS}	Dialii-to-Source Leakage Current			250	μΑ	$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 150$ °C
	Gate-to-Source Forward Leakage			200	nA .	$V_{GS} = 20V$
IGSS	Gate-to-Source Reverse Leakage			-200	nA i	$V_{GS} = -20V$
Qg	Total Gate Charge		160	250		I _D = 78A
Q _{gs}	Gate-to-Source Charge		35	52	nC	V _{DS} = 60V
Q _{gd}	Gate-to-Drain ("Miller") Charge		54	81		V _{GS} = 10V4
t _{d(on)}	Turn-On Delay Time		11	—		$V_{DD} = 38V$
t _r	Rise Time		150	_	, no	I _D = 78A
t _{d(off)}	Turn-Off Delay Time		150	_	ns	$R_G = 2.5\Omega$
t _f	Fall Time		140			V _{GS} = 10V ⊕
L _D	Internal Drain Inductance		4.5		n I I	Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance	_	7.5		nH 	from package and center of die contact
C _{iss}	Input Capacitance		5600			$V_{GS} = 0V$
Coss	Output Capacitance		890	_	pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		190			f = 1.0KHz, See Fig. 5
Coss	Output Capacitance		5800			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0KHz$
Coss	Output Capacitance		560			$V_{GS} = 0V$, $V_{DS} = 60V$, $f = 1.0KHz$
Coss eff.	Effective Output Capacitance ®		1100	_	1 1	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 60V$

Source-Drain Ratings and Characteristics

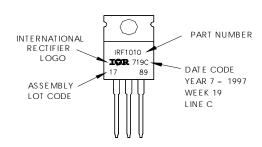
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current	130	400.0		MOSFET symbol	
	(Body Diode)			130©	A	showing the
I _{SM}	Pulsed Source Current			520] '`	integral reverse
	(Body Diode) ①			520		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 78A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		110	170	ns	$T_J = 25^{\circ}C$, $I_F = 78A$
Q _{rr}	Reverse RecoveryCharge		390	590	nC	di/dt = 100A/μs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				


Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- $\begin{tabular}{ll} \hline \& Starting $T_J=25^\circ$C, $L=0.13mH$\\ $R_G=25\Omega$, $I_{AS}=78A$. (See Figure 12). \\ \hline \end{tabular}$
- $\label{eq:loss} \begin{array}{l} \text{ } 3 \text{ } I_{SD} \leq 78A, \text{ } di/dt \leq 320A/\mu s, \text{ } V_{DD} \leq V_{(BR)DSS}, \\ T_{J} \leq 175^{\circ}C \end{array}$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- $\ ^{\circ}$ C $_{oss}$ eff. is a fixed capacitance that gives the same charging time as C $_{oss}$ while V $_{DS}$ is rising from 0 to 80% V $_{DSS}$.
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- $\ \ \,$ Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)



TO-220AB Part Marking Information

LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market.

